

Centers for Disease Control Early Aberration Reporting System

Lori Hutwagner Matthew Seeman William Thompson Tracee Treadwell

Introduction

- Describe development / purpose of EARS
- Provide Case Definition for Aberration
- Review Aberration Detection Methods used in EARS
- Provide Recommendations for Sites
- Provide Examples from EARS

EARS Background

Developed by EPO and NCID

- Several methods developed previous to EARS
- EPO provided initial support for EARS
- NCID took over the support of EARS
- Aberration Detection Methods
 - Suite of available aberration detection methods
 - Developed by both CDC and Non-CDC collaborators

Primary Purpose

 Providing aberration detection methods to local health departments that have been validated using several alternative data sources

EARS Background

- Currently used by many health department agencies for bioterrorism surveillance
 - States
 - Counties
 - Cities
- Also used at several public events
 - Democratic Convention 2001
 - Super Bowl 2001
 - World Series 2001

Define Aberration Detection

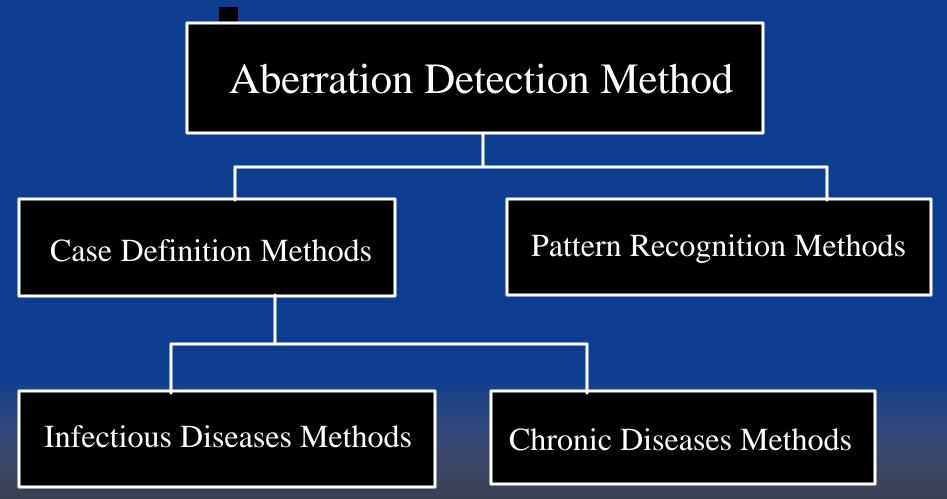
Case Definition for Aberration

- Change in the distribution or frequency of health events when compared to historical data.
- This May or May not be an outbreak
- This May or May not be of public health interest

Principles and Practice of Public Health Surveillance (2002)

Why is this case definition important?

- Validation of models requires a fair comparison across methods and data sources
- Data entry errors
 - Would not be considered a false positive according to our definition
 - Source of aberration is identified and understood
 - Important issue in evaluating sensitivity and specificity
- Other similar events should be modeled and understood as well



Important characteristics of aberration detection methods

- High Sensitivity
- Necessary communication among staff
- Need to notify appropriate authorities
- When do you follow-up on aberrations???

Review of Literature

Infectious Disease Methods

Long Term Implementation
 Extended baseline methods (3-5 years)
 Limited baseline methods (7 days - 3 years)

Short Term Implementation

- Implementation expected for less then 30 days such as political conventions
- No initial baseline available (1-6 days)

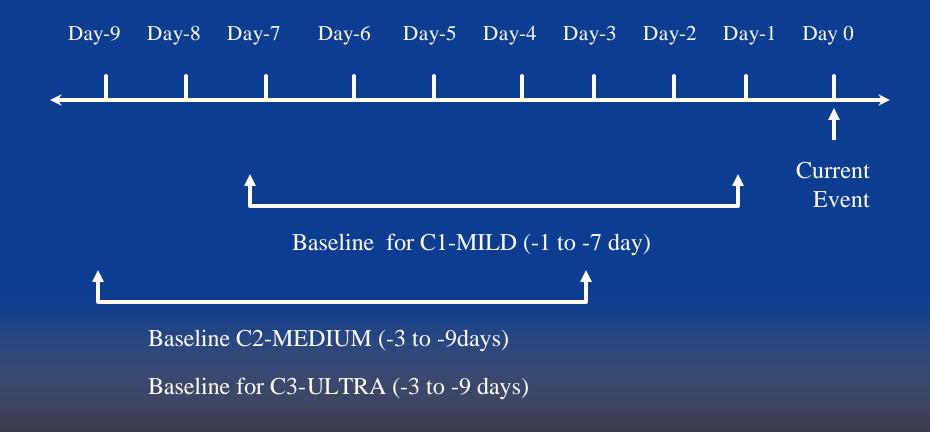
Long Term Implementation Extended Baseline Methods

- Historical Limits Method (Stroup et.al. 1989)
- Seasonaly Adjusted CUSUM (Hutwagner et.al. 1997)
- Log Linear Regression (Farrington et.al. 1996)
- Compound Smoothing (Stern et.al. 1999)
- Cyclical Regression (Simonsen et.al. 1997)

Long Term Implementation Summary

- Validation of Methods
 - Selected 2 Methods for Implementation
 - ★ Historical Limits Method
 - ***** CUSUM Method
 - Methods complement each other
 - CDC has 5+ experience problem solving with these methods
- EARS will implement additional methods
 - Needs to further validate methods

Long Term Implementation Limited Baseline Methods


C1-MILDC2-MEDIUMC3-ULTRA

2 > CUSUM₋₁ + Current Count – (Baseline Mean + Baseline Std Dev)

Baseline Std Dev

Timeline for Implementation

Short Term Implementation No Available Baseline

P Chart
2X2 Tables (chi square)
Moving Average Chart
CUSUM

Summary of Methods Available in EARS

- Historical Methods
 - Historical Limits
 - Seasonality adjusted CUSUM
- CUSUM Methods
 - ♦ C1-MILD
 - ♦ C2-MEDIUM
 - ♦ C3-ULTRA
- Drop In Surveillance Methods
 - P Chart
 - 2x2 Tables (Chi Square)
 - Moving Average Chart
 - ♦ CUSUM

Why Does Industry Continue To Use Quality Control Methods?

- First developed P-Charts in 1920's
- Stoumbos et al. The State of Statistical Process Control as We Proceed into the 21st Century, Journal of the American Statistical Association in 2000
- CUSUM and P-Chart methods continue to be among the most important and widely used quality control tools in statistics
- Applied in manufacturing, engineering, environmental science, biology, genetics, epidemiology, medicine, finance, law enforcement and athletics

Implementation Of Methods Based on Time

Implementation of Method

Implement emergency surveillance

Event

Time

Day 1

Day 7+

3 Years +

Day 2-6

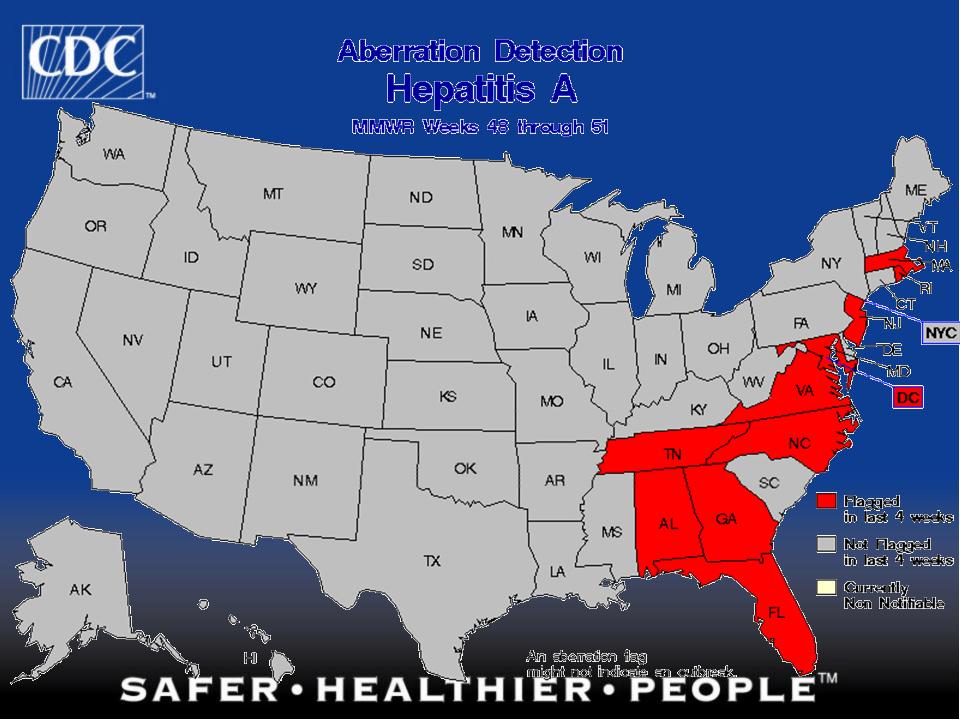
P-Chart, CUSUM

P-Chart

C1-MILD, C2-MEDIUM, C3-ULTRA

Multiple methods depending on data source

SAFER•HEALTHIER•PEOPLE™


EARS Drop In Surveillance Real Time Applications

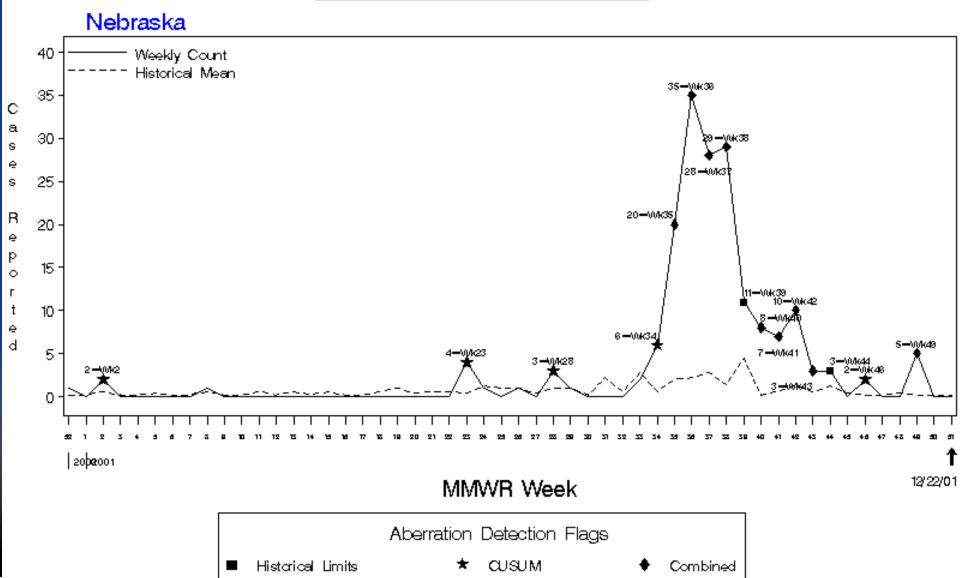
Foodborne outbreaks

Respiratory illness

Data entry errors

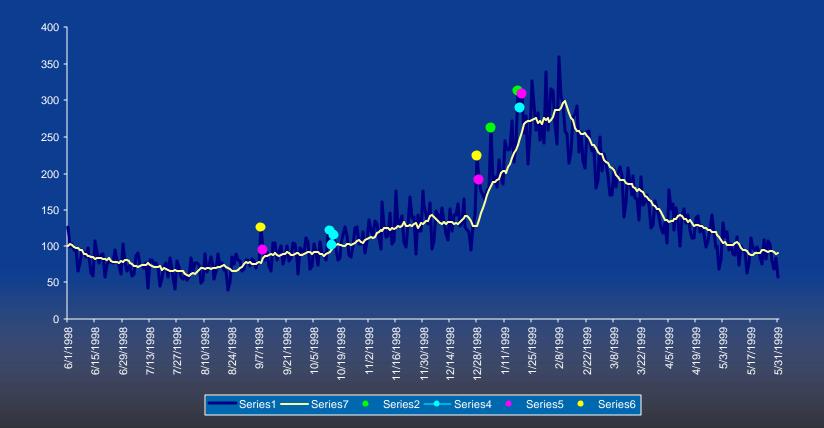
Bioterrorism ??

Aberration Detection


AII USA

Flagged Events for MMWR Weeks 48 through 51

		Count (YTD)						CUSUM		
Event	Week	1996	1997	1998	1999	2000	2001	Mean	STD	Detection Flags
Anthrax	48	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (16)	0.20	0.20	CUSUM Hist Limits
<u>Botulism (Foodborne)</u>	50	0 (24)	0 (27)	0 (14)	0 (22)	0 (18)	1 (27)	0.20	0.20	CUSUM
Botulism (Infant)	49	1 (68)	2 (68)	0 (57)	0 (84)	0 (79)	2 (82)	0.60	0.89	CUSUM
Botulism (Other/Wound)	51	0 (21)	1 (19)	0 (27)	0 (36)	0 (18)	1 (21)	0.20	0.45	CUSUM
<u>Brucellosis</u>	50	1 (94)	2 (74)	1 (55)	2 (70)	2 (62)	3 (93)	1.60	0.55	CUSUM
<u>Cholera</u>	48	0 (3)	0 (6)	0 (13)	0 (5)	0 (8)	1 (4)	0.20	0.20	CUSUM
<u>Cyclosporiasis</u>	48	0 (0)	3 (85)	1 (54)	0 (56)	0 (51)	3 (124)	0.80	1.30	CUSUM
	49	0 (0)	2 (87)	1 (55)	0 (56)	0 (51)	3 (127)	0.60	0.89	CUSUM
<u>EhrlichiosisHum Granu (HGE)</u>	48	0 (0)	0 (75)	2 (104)	12 (180)	2 (199)	15 (206)	3.20	5.02	CUSUM
<u>EhrlichiosisHum Mono (HME)</u>	48	0 (0)	0 (24)	0 (19)	3 (77)	2 (98)	3 (93)	1.00	1.41	CUSUM
	51	0 (0)	0 (24)	0 (19)	0 (84)	1 (101)	1 (99)	0.20	0.45	CUSUM
Enceph (St.Louis)	50	0 (0)	0 (12)	0 (24)	0 (4)	0 (3)	1 (3)	0.20	0.20	CUSUM
	51	0	0	0	0	0	1	0.20	0.20	CUSUM


Aberration Detection

Cryptosporidiosis

Influenza Mortality Daily State Level

FAQ What Happened with Anthrax in NYC ?

- Our methods did not detect anthrax in NYC
- Why did this happen?
 - We monitored Hospital EDs
 - Case definition for Inhaled Anthrax
 - ♦ 6 of 7 patients went to private physicians
 - ★ Reported cutaneous anthrax
 - * No one was monitoring this outcome at the time
- We believe our methods will detect these outcomes if they occur
 - New case definitions have been added

Summary of EARS

- Aberration Detection Methods
 - Suite of available aberration detection methods
 - Developed by both CDC and Non-CDC colleagues
- Primary Purpose
 - Providing aberration detection methods to local health departments that have been validated using several alternative data sources
- We have brought EARS CDs to distribute